BMath-II-Topology (Final Test)

Instructions: Total time 3 Hours. Attempt as many question as you please, for a max score of 50. You may use results proved in the class without proof. Use concepts, notations, terminology, results, as covered in the course. If you wish to use a problem from a homework/assignment as a result, supply its solution too.

- 1. Prove that the sphere $S^n \subset \mathbb{R}^{n+1}$ is path connected for $n \ge 1$. (5)
- 2. Let X be a connected regular topological space having at least two points. Prove that X is uncountable. (5)
- 3. (i) Let X, Y be topological spaces, Y connected and $p : X \longrightarrow Y$ be a quotient map. Assume all fibers $p^{-1}(y), y \in Y$, are connected. Prove that X is connected.

(ii) Does the conclusion of (i) hold if we drop the hypothesis of fibers of p being connected? Explain. (5+5)

- 4. Prove that the space obtained by identifying the boundary circle of a Möbius band to a point is normal. (10)
- 5. Let $n \ge 1$ and $f: \mathbb{S}^n \longrightarrow \mathbb{R}$ be continuous. Prove that there exists $x \in \mathbb{S}^n$ such that f(x) = f(-x). (10)
- 6. Let $n \ge 1$ and $P(z_1, \dots, z_n) \in \mathbb{C}[z_1, \dots, z_n]$ be a polynomial. Prove that \mathbb{C}^n - $\mathbb{Z}(P)$ is path connected. Here $\mathbb{Z}(P) \subset \mathbb{C}^n$ is the set of all roots of P in \mathbb{C}^n and \mathbb{C}^n has the Euclidean topology. (10)
- 7. Prove that $\operatorname{GL}_n(\mathbb{C})$ is connected. (10)
- 8. Let $X \subset \mathbb{R}^2$ be the subspace defined by $X = \bigcup_{n=1}^{\infty} X_n$ where $X_n = \{(x,y) \in \mathbb{R}^2 | (x-\frac{1}{n})^2 + y^2 = \frac{1}{n^2} \}$ and $X' \subset \mathbb{R}^2$ be the subspace $X' = \bigcup_{n=1}^{\infty} X'_n$ where $X'_n = \{(x+\frac{1}{n})^2 + y^2 = \frac{1}{n^2} \}$. Let $Y = X \cup X'$. Prove that X is homeomorphic to Y. (10)

9. Prove that
$$\mathbb{R}P^n \cong O(n+1)/(O(n) \times O(1)).$$
 (10)